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Abstract
In this paper, we use a nonintegrability theorem by Morales and Ramis
to analyse the integrability of Friedmann–Robertson–Walker cosmological
models with a conformally coupled massive scalar field. We answer the long-
standing question of whether these models with a vanishing cosmological
constant and non-self-interacting scalar field are integrable: by applying
Kovacic’s algorithm to the normal variational equations, we prove analytically
and rigorously that these equations and, consequently, the Hamiltonians are
nonintegrable. We then address the models with a self-interacting massive
scalar field and cosmological constant and show that, with the exception of a
set of measure zero, the models are nonintegrable. For the spatially curved
cases, we prove that there are no additional integrable cases other than those
identified in the previous work based on the non-rigorous Painlevé analysis.
In our study of the spatially flat model, we explicitly obtain a new possibly
integrable case.

PACS numbers: 02.30.Ik, 47.10.Df, 98.80.Jk

1. Introduction

In recent years, the search for nonintegrability criteria for the Hamiltonian systems in the
complex domain has acquired more relevance [1–5]. Such techniques are potentially of
particular importance in cosmology because of controversies over both integrability, and the
existence of chaos in cosmological models [6–16]. A part of the problem is that certain
methods used to traditionally measure chaos in non-relativistic systems, such as the Lyapunov
exponents, are no longer valid in general relativity where there is no absolute time coordinate.
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In this work, we use a theorem by Morales and Ramis [1] which establishes a relation
between two different concepts of integrability: the complete integrability of complex
analytical Hamiltonian systems (given by Liouville’s theorem) and the integrability of
homogeneous linear ordinary differential equations in terms of Liouvillian functions in the
complex plane. A Liouvillian function is a function which can be written as a combination of
elementary functions, algebraic functions (solutions of polynomial equations), their indefinite
integrals or exponentials of these integrals. Since we are working in the complex domain, this
definition includes (but is not limited to) functions such as logarithms, trigonometric functions
and their inverses.

In this paper, we use the conformal form of the FRW metric

ds2 = a2(η)

[
dη2 − 1

1 − kr2
dr2 − r2 d�2

]
, (1)

with η being the conformal time, a(η) the scale factor and k = 0,±1 the curvature.
It is known [9, 12] that a suitable Hamiltonian which describes a cosmological model

with this metric, and a conformally coupled scalar field, φ, of mass m is

H = 1

2

[
−(

p2
a + ka2

)
+

(
p2

φ + kφ2
)

+ m2a2φ2 +
λφ4

2
+

�a4

2

]
, (2)

with � being the cosmological constant, λ the self-coupling of φ and pa and pφ the momenta
conjugate to a and φ, respectively.

Since the cases of the free and self-interacting scalar field are best solved using different
techniques, we treat these cases separately: in section 3 we study the massive scalar field with
λ = � = 0, and in section 4 the general case. Before presenting our analysis, we describe
briefly the Morales–Ramis theorem which is central to our work.

2. The Morales–Ramis Theorem

The Morales–Ramis Theorem (MRT) rigorously provides necessary conditions for the
integrability of a Hamiltonian system and so sufficient conditions for nonintegrability. The
theorem is based on the analysis of the variational equations (in particular, the normal
variational equation, or NVE) for the perturbations of a non-equilibrium particular solution.
The basic idea is that if the flow of the Hamiltonian system has a regular behaviour (is
integrable), then the linearized flow along a particular integral curve given by the NVE must
also be regular (integrable). Conversely if the linearized flow is nonintegrable the system as a
whole will be nonintegrable.

The Hamiltonian system, XH , of dimension n is called integrable if there exist n
independent constants of the motion in involution. By considering the differential Galois
group of the NVE, the theorem of Morales–Ramis links this concept of integrability to an
apparently different concept of integrability—the existence of Liouvillian solutions of the
NVE of XH . The theorem may be stated as follows.

Theorem 1. If there are n first integrals of XH that are independent and in involution, then
the identity component of the Galois group of the NVE is Abelian.

It is known that [17] for an ODE to admit a Liouvillian solution, the identity component
of its Galois group must be soluble. Hence, if the solutions are not Liouvillian, the identity
component of the Galois group is not soluble and, therefore, non-Abelian.

Our strategy will therefore be to

(1) select a particular solution;
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(2) obtain the variational equations and the NVE;
(3) check if the NVE has any Liouvillian solutions.

There are many ways of performing the third step, with the efficiency dependent on the
Hamiltonian (and NVEs) under study. Because of this we find it useful to apply different
methods, such as Kovacic’s algorithm [18], or a theorem by Kimura [19], for specific cases of
the Hamiltonian.

3. The noninteracting scalar field

The dynamics of the FRW model with a massive noninteracting scalar field has been discussed
and studied before using numerical methods [6–10]. Though the results are strongly suggestive
of nonintegrability, by their nature these numerical studies do not constitute a proof.

Several papers have attacked the problem of the integrability of the dynamical system
analytically by studying the integrability of the corresponding Hamiltonian [6–10]:

H = 1
2

[(
p2

φ + kφ2
) − (

p2
a + ka2

)
+ m2a2φ2

]
. (3)

We note that, due to the Hamiltonian constraint of General Relativity we have that, for
vacuum, H = 0. Using monodromy groups, Ziglin [11] concluded that the Hamiltonian (3)
is nonintegrable on the interval 0 < H < 1/2m2, which excludes the particularly interesting
case for General Relativity, H = 0. The intention of this part of the paper is to fill that gap.

3.1. The case k �= 0

We use the theorem of Morales–Ramis with (3). We choose as our set of non-equilibrium
particular solutions the invariant plane pa = a = 0. The NVEs relative to this plane are

d2δ a

dt2
= (−k + m2φ2)δa. (4)

Changing the independent variable to φ and renaming δa = y, we obtain the equation

d2y

dφ2
+

1

φ

dy

dφ
+

(
m2

k
− 1

φ2

)
y = 0. (5)

This equation is a second-order, linear and homogeneous ODE with coefficients which
are rational functions of φ. We now need to determine whether this ODE has any Liouvillian
solutions. For this case it is convenient to apply Kovacic’s algorithm which, though complex
to write down, is, as we shall see, straightforward to apply to the problem in hand. Since the
various versions of Kovacic’s algorithm in the literature [1, 16, 18, 20] have slight differences
in the presentation and conventions, we include the version of the algorithm used by us
in the appendix. We show how the algorithm quickly determines that the Hamiltonian is
nonintegrable for k �= 0.

When k = 0 the analysis based on the invariant planes a = pa = 0 and φ = pφ = 0
is inconclusive. However, because the potential is homogeneous in this case, there exist
particular nonsingular solutions which lie outside these planes and can be used as a basis for
the analysis. Fortunately, the case of homogeneous potentials has been exhaustively studied
by Yoshida [5] and Morales–Ramis [1] and so we can simply apply those results.

Using the well-known transformations (see the appendix), we transform (5) into the
reduced invariant form:

ξ ′′ =
(

3k − 4m2φ2

4kφ2

)
ξ. (6)
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Lemma 1. Equation (5) has no Liouvillian solutions when k �= 0 and m �= 0.

Proof. By the application of Kovacic’s algorithm to equation (6).

Step 1. g(φ) has one finite pole, at φ = 0, of order 2 and the pole at infinity, of order 4 (since,
by assumption, we are treating the massive case, m �= 0). This implies that m+ = 4 and
γ = γ2 = 1. Since the pole at φ = 0 belongs to 	2, we calculate the Laurent series (when
k �= 0) as

g0 = 3

4
φ−2 − m2

k
.

Hence α0 = 3
4 and β0 = 0. Thus we have L = {1}.

Step 2. Because L = {1} the unique value for n is n = 1. Through the items 2.3 and 2.5, we
calculate the sets Ec. From 2.3 we have that E0 = {

3
2 ,− 1

2

}
. In item 2.5.2, we need to expand

g around φ = ∞. Doing this we obtain

g∞ = 3

4
φ−2 − m2

k
�⇒ E∞ = {1}.

Summarizing,

E0 =
{

3

2
,−1

2

}
and E∞ = {1}.

Step 3. In this step, we need to calculate
∏

c∈	 Ec, using the sets determined in the previous
step. We obtain the set of sets given by∏

c∈	

Ec =
{{

3

2
, 1

}
,

{
−1

2
, 1

}}
.

From 3.1(i) we calculate the values of d(e) as d = − 3
2 and d = 1

2 , respectively. Since
neither of these values satisfies 3.1(i) and there are no other values of n in L, the Galois
group of (6) is SL(2, C), equation (6) is nonintegrable in terms of Liouvillian functions, and
therefore the system represented by the Hamiltonian (3) is also nonintegrable when k �= 0.
This completes the proof. �

3.2. The case k = 0

When k = 0, the Hamiltonian (3) assumes the form

H = 1
2

(
p2

φ − p2
a + m2a2φ2

)
, (7)

with a manifestly homogeneous potential. The Hamiltonians with homogeneous potentials
have generated interest in the literature, stimulated by the results of Yoshida [5], refined and
generalized by Morales–Ramis [1], which give the easily used criteria for deciding when
such Hamiltonians may be integrable. We shall refer to these results as the Morales–Ramis–
Yoshida (MRY) theorem. We note that the Hamiltonian (2) with k = 0 (or essentially
equivalent Hamiltonians) have been studied in detail recently [21–24].

Explicitly, the MRY theorem treats Hamiltonians of the form

H = 1

2

n∑
i=1

p2
i + V (q1, . . . , qn), (8)

where V is a homogeneous potential of degree g (i.e., V (a
−→
Q) = agV (

−→
Q), for a constant).

Let c be a solution of the equation c = −→
V

′
(c) and Yi (the Yoshida coefficients) the eigenvalues

4



J. Phys. A: Math. Theor. 41 (2008) 075401 L A A Coelho et al

of the matrix V ′′(c) (note that one of these eigenvalues is trivial, in that it corresponds to the
tangential variational equation, and has the value g−1). Then we may state the MRY theorem
as follows.

Theorem 2 (Morales–Ramis–Yoshida). If the Hamiltonian system of the form (8) is completely
integrable (with holomorphic or meromorphic first integrals), then each pair (g, Yi) belongs
to one of the following list (where we do not consider the trivial case g = 0):

(1) (g, p + p(p − 1)g/2);
(2) (2, arbitrary complex number);
(3) (−2, arbitrary complex number);
(4)

(−5, 49
40 − 1

40

(
10
3 + 10p

)2);
(5)

(−5, 49
40 − 1

40 (4 + 10p)2
);

(6)
(−4, 9

8 − 1
8

(
4
3 + 4p

)2);
(7)

(−3, 25
24 − 1

24 (2 + 6p)2
);

(8)
(−3, 25

24 − 1
24

(
3
2 + 6p

)2);
(9)

(−3, 25
24 − 1

24

(
6
5 + 6p

)2);
(10)

(−3, 25
24 − 1

24

(
12
5 + 6p

)2);
(11)

(
3,− 1

24 + 1
24 (2 + 6p)2

);
(12)

(
3,− 1

24 + 1
24

(
3
2 + 6p

)2);
(13)

(
3,− 1

24 + 1
24

(
6
5 + 6p

)2);
(14)

(
3,− 1

24 + 1
24

(
12
5 + 6p

)2);
(15)

(
4,− 1

8 + 1
8

(
4
3 + 4p

)2);
(16)

(
5,− 9

40 + 1
40

(
10
3 + 10p

)2);
(17)

(
5,− 9

40 + 1
40 (4 + 10p)2

);
(18)

(
g, 1

2

[
g−1
g

+ p(p + 1)g
]);

(9)

where p is an arbitrary integer.

Lemma 2. When k = 0 the only first integral of the Hamiltonian system (3) is the Hamiltonian,
and the system is therefore nonintegrable.

Proof. By the application of the MRY theorem. For the system represented by (7) the only
nontrivial Yoshida coefficient is Y1 = −1. For g = 4, the only possibilities for satisfying
theorem 3 are (1), (15) and (18). For all these cases there are no integer values of p which
solve Y1 = −1, and we conclude that the system represented by (7) is nonintegrable. This
completes the proof of lemma 2.

We can now enunciate the following theorem. �

Theorem 3. The Friedmann–Robertson–Walker model with a conformally coupled massive
scalar field represented by the Hamiltonian (2) with H = 0 is not completely integrable.

Proof. By lemma 1, there are no Liouvillian solutions of the NVE for the plane a = pa = 0.
This implies that the identity component of the differential Galois group of the NVE is not

5
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soluble and therefore non-Abelian. Using theorem 1, we have that the only first integral of the
Hamiltonian system is the Hamiltonian itself, and that the system is not completely integrable
in this case. By lemma 2, the Hamiltonian system is also not completely integrable when
k = 0. Therefore, the Hamiltonian system represented by (2) with H = 0 is nonintegrable for
all values of k. �

4. The general case

In this section, we study FRW spacetimes with a self-interacting scalar field, φ, of mass
m, conformally coupled to gravity, and with a cosmological constant, �. Since the NVEs
in this case are more complex, we demonstrate the nonintegrability of these equations by
transforming them into hypergeometric equations, and applying the results of Kimura [19] for
these equations to establish their generic nonintegrability.

The Hamiltonian (2) (or ostensibly equivalent ones) has been extensively studied in the
literature [9, 12, 21] but, in our opinion, for reasons described below, these works are either
incomplete or non-rigorous. Besides the initial numerical studies by Blanco et al [9], early
investigations of the integrability of (2) can be traced back to Lakshmanan and Sahadevan
[28] who studied a variety of Hamiltonians for coupled nonlinear anharmonic oscillators
using the ARS algorithm [25–27] and determined explicitly many first integrals other than the
Hamiltonians. Strictly speaking, they treated positive-definite Hamiltonians, but the simple
canonical transformation

a → ia, p → −ip (10)

brings (2) into the positive definite form. Their results are extensive and include (2) as a
particular case. However, as we have mentioned, their use of the Painlevé analysis and the
ARS algorithm leaves some doubt in the air, in particular as to the integrability of the other
cases.

Though there is a strong connection between integrability and the Painlevé property, and
the latter has been remarkably successful in indicating possibly integrable cases, it is worth
noting that the lack of the Painlevé property is not a rigorous obstruction to integrability [29].
Additionally, the ARS algorithm is not a foolproof method for determining whether a system
possesses the Painlevé property, and its application can lead to false conclusions [13–15],
particularly when applied to determining the nonintegrability of a dynamical system.

Helmi and Vucetich [12] applied the ARS algorithm explicitly to the Hamiltonian (2)
transformed by (10) for both k = 0 and k �= 0. Equating the parameters used in [12, 28],
we find that their results are essentially the same. When k �= 0, they identified the possibly
integrable cases

� = λ = −m2/3, � = λ = −m2, (11)

while, for k = 0, they gave the additional possibilities

� = 8λ = −8m2/3, � = 16λ = −8m2/3. (12)

That these cases are indeed integrable was confirmed by finding explicitly the
corresponding first integrals, as was done in [28]. Once again the use of the Painlevé analysis
means that nothing definitive can be said about the integrability for other values of the
parameters. In fact, as we shall see, by applying the MRT we identify other combinations of
the parameters when k = 0 which may produce integrable Hamiltonians. When k �= 0 we can,
however, show that the model must be nonintegrable for all other combinations of parameters.

More recently, the Hamiltonian (2) with k = 0 has been studied by Maciejewski and
Szydłowski [21, 22] using rigorous methods developed by Ziglin [2] and Morales–Ramis

6
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[1]. In this case, the potential is homogenous, which simplifies the analysis, since the case
of homogenous potentials was studied by Yoshida [5] and later extended by Morales–Ramis
using the differential Galois group theory. Using these results they conclude (rigorously) that
the system is generically nonintegrable. They give conditions on the parameters for possibly
integrable cases, and find one set of solutions with λ = −m2. By symmetry, a similar set
with � = −m2 obviously exists. However, no other possibly integrable cases are identified.
In fact, since the general problem involves solving a system of three diophantine equations in
two parameters, it is not even evident that other solutions exist. In the same paper, it is implied
that the case k �= 0 is also nonintegrable but no proof or analysis supporting this conclusion is
presented by the authors.

Later, the authors [31] analysed the Hamiltonian (2) using the MRT but omitted the
analysis of a third invariant plane which places further restrictions on possibly integrable
cases. Most recently, Boucher and Weil [32] study (2) using the ‘higher variational theorem’
of Morales–Ramis–Simó [33]. They conjecture that, apart from the cases cited by Helmi and
Vucetich, there are no other integrable cases, and provide strong evidence for this result. Here
we prove this conjecture.

In summary, initial studies of (2) have used the Painlevé analysis which, though strongly
related to integrability, is not always reliable. Later works have used rigorous methods but
are incomplete: the cases k �= 0 (and the consequent inhomogeneous potential) have not been
covered, and when k = 0 all possibly integrable cases have not been explicitly identified.

Here we use the MRT to (i) rigorously prove that the Hamiltonian (2) is generically
nonintegrable when k �= 0; (ii) together with the results of Boucher and Weil, prove that
the only integrable cases when k �= 0 are those identified by Helmi and Vucetich, proving
Boucher and Weil’s conjecture; (iii) identify, in the case k = 0, a new explicit combination of
the parameters for which the model is possibly integrable (in other words, nonintegrability is
uncertain).

We apply different theorems when k �= 0 and k = 0 since, as was the case with the
free scalar field, the analysis of the invariant planes is not conclusive when k = 0. When
k �= 0 the NVE can be transformed into a hypergeometric equation. The problem of when
the hypergeometric equation has a solution in terms of Liouvillian functions was solved by
Kimura [19] and we can apply his results. Again the case k = 0 results in a homogeneous
potential, and the integrability of these Hamiltonians can be studied using the MRY theorem.

5. Model with k �= 0

To apply the MRT we first need a set of non-equilibrium particular solutions about which
we will perform the perturbations to obtain the NVEs. Two obvious invariant planes are
a = pa = 0 and φ = pφ = 0. To identify a third invariant plane, we make a canonical change
of variables in which the new coordinates (Q1,Q2) and the new momenta (P1, P2) are linear
combinations of (a, φ) and (Pa, Pφ), respectively, and impose that (Q̇1 = 0, Ṗ1 = 0). With
these conditions a new invariant plane is (Q1 = 0, P1 = 0), where

Q1 =
√

� + m2a +
√

−(λ + m2)φ,

Q2 =
√

�λ − m4

√
2k(� + 2m2 + λ)

(√
λ + m2a +

√
� + m2φ

)
,

P1 = 1

� + 2m2 + λ

(√
� + m2Pa −

√
−(λ − m2)Pφ

)
,

P2 =
√

2k

�λ − m4

(√
λ + m2Pa +

√
−(� + m2)Pφ

)
.
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We note that the transformation is singular when λ = � = −m2 and so this case should
strictly be treated separately but, since this case is already known to be integrable, it is not
necessary to pursue the analysis further.

Turning to the calculation of the NVEs, for the invariant plane pa = a = 0 the NVE is

d2δa

dt2
= (−k + m2φ2)δa. (13)

Renaming δa = x, changing the independent variable to φ, and using the Hamiltonian to
evaluate the derivatives of φ, we obtain

d2x

dφ2
+

2(k + λφ2)

φ(2k + λφ2)

dx

dφ
+

2(−k + m2φ2)

φ2(2k + λφ2)
x = 0. (14)

We note that this is a linear homogeneous ODE whose coefficients are rational functions,
and which has three finite poles: two simple and one double. Since λ �= 0, we can transform
(14) to a Heun equation by the sequence of S-Homotopic and Möbius transformations x = yφ

and φ =
√

−2k
λ

z, respectively, after which we have

d2y

dz2
− 3 − 4z2

z(z2 − 1)

dy

dz
+

2(m2 + λ)y

λ(z2 − 1)
= 0. (15)

Applying the recent work by Maier [34], we transform (15) into a hypergeometric equation
with the Heun-to-hypergeometric reduction z = 1 − �2 and obtain

d2y

d�2
+

−1 + 5�

2�(� − 1)

dy

d�
+

(m2 + λ)y

2λ�(� − 1)
= 0. (16)

We compare (16) with the general form of the hypergeometric equation

d2y

dx2
+

[γ − (α + β + 1)x]

x(1 − x)

dy

dx
− αβy

x(1 − x)
= 0, (17)

where α, β, γ ∈ C are parameters, and identify γ = 1/2, and the two possible pairs of values
for α and β:

β1 = 3 +
√

1 − 8m2/λ

4
and α1 = 3 −

√
1 − 8m2/λ

4
,

β2 = 3 −
√

1 − 8m2/λ

4
and α2 = 3 +

√
1 − 8m2/λ

4
.

We now turn to Kimura’s theorem [1, 19] which tells us for which combinations of the
parameters {α, β, γ } equation (17) has a Liouvillian solution.

Theorem 4 (Kimura). For the hypergeometric equation (17), define the exponent differences
λ̂ = 1 − γ, µ̂ = α − β and ν̂ = γ − α − β. Then the identity component of the Galois group
of the equation is soluble if, and only if, either

(A) at least one of λ̂ + µ̂ + ν̂,−λ̂ + µ̂ + ν̂, λ̂ − µ̂ + ν̂ and λ̂ + µ̂ − ν̂ is an odd integer, or

(B) each of the quantities ±λ̂,±µ̂ and ±ν̂ belong (in an arbitrary order) to one of the
following 15 families,

8
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1 1/2 + l 1/2 + m Arbitrary complex number

2 1/2 + l 1/3 + m 1/3 + q
3 2/3 + l 1/3 + m 1/3 + q l + m + q even
4 1/2 + l 1/3 + m 1/4 + q
5 2/3 + l 1/4 + m 1/4 + q l + m + q even
6 1/2 + l 1/3 + m 1/5 + q
7 2/5 + l 1/3 + m 1/3 + q l + m + q even
8 2/3 + l 1/5 + m 1/5 + q l + m + q even
9 1/2 + l 2/5 + m 1/5 + q l + m + q even

10 3/5 + l 1/3 + m 1/5 + q l + m + q even
11 2/5 + l 2/5 + m 2/5 + q l + m + q even
12 2/3 + l 1/3 + m 1/5 + q l + m + q even
13 4/5 + l 1/5 + m 1/5 + q l + m + q even
14 1/2 + l 2/5 + m 1/3 + q l + m + q even
15 3/5 + l 2/5 + m 1/3 + q l + m + q even

where l, m and q are integers.

Writing c ≡ 1
2

√
1 − 8m2/λ, we have two possible sets of {λ̂, µ̂, ν̂} for the transformed

NVE (16), namely,

λ̂ = 1
2 , µ̂1 = −c, ν̂1 = γ − α1 − β1 = −1,

λ̂ = 1
2 , µ̂2 = +c, ν̂2 = γ − α2 − β2 = −1.

We discover that (16) satisfies case (A) if c = (2K + 1)/2,K ∈ Z. Turning now to case
(B), of the 15 possibilities in the table, we find that only the first is consistent with our values
of λ̂, µ̂ and ν̂. However, the restriction obtained on the value of c is the same as that obtained
in the case (A). We therefore conclude that (14) has a Liouvillian solution if, and only if,√

1 − 8m2/λ = 2M + 1, M ∈ Z. (18)

We can exclude the possibility M = 0 since that corresponds to either m = 0 or λ = ∞.
Because of the manifest symmetry between a and φ in the Hamiltonian, the analysis for

the invariant plane pφ = φ = 0 is almost identical and we determine that the NVE for this
plane has Liouvillian solutions if, and only if,√

1 − 8m2/� = 2N + 1, N ∈ Z. (19)

Again we exclude N = 0 since then either m = 0 or � = ∞.
For the third invariant plane, we calculate the NVE

d2X

dQ2
+

2Q2
2 − 1

Q2(Q2 − 1)(Q2 + 1)

dX

dQ2
−

[
4Q2

2m
2(� + λ) + �λ

(
6Q2

2 − 1
)

+ m4
(
2Q2

2 + 1
)]

X

Q2
2(Q2 − 1)(Q2 + 1)(�λ − m4)

= 0.

(20)

This equation can also be transformed into a hypergeometric equation. Using the same
transformations as before (X = Q2Y , followed by � = 1 − Q2

2), we have

d2Y

d�2
+

−5� + 1

2�(1 − �)

dY

d�
+

(� + m2)(λ + m2)Y

�(1 − �)(�λ − m4)
= 0. (21)

Applying Kimura’s theorem to equation (21), we find that it is integrable if, and only if,√
25�λ + 16m2(λ + �) + 7m4

�λ − m4
= 2P + 1, P ∈ Z. (22)
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For the Hamiltonian to be integrable, it is necessary that (18), (19) and (22) hold
simultaneously. Substituting (18) and (19) into (22), we find that M,N and P must be
integers which satisfy√

32N2 + 32N − 100 − M(M + 1)(7N2 + 7N − 32)

M(M + 1)N(N + 1) − 4
= 2P + 1,

subject to M �= 0 and N �= 0. This rather daunting equation simplifies a little with the
substitutions M = µ − 1

2 , N = ν − 1
2 :√

−1863 − 540µ2 − 540ν2 + 112ν2µ2

−63 − 4µ2 − 4ν2 + 16ν2µ2
= 2P + 1, µ �= 1

2
, ν �= 1

2
. (23)

Since (23) is symmetric with respect to ±µ ↔ ±ν, we only need to study the quadrant
µ � 0, ν � 0. In fact, without loss of generality, we need only study the octant where µ � ν.
Now for an integer solution for P to exist

1863 − 540µ2 − 540ν2 + 112ν2µ2

63 + 4µ2 + 4ν2 − 16ν2µ2
� 0. (24)

Substituting µ = ν = 0 this is true in the neighbourhood of the origin. By analysing separately
the curves along which the numerator and denominator change sign, and remembering that
ν = 1

2 does not interest us, it is not difficult to establish that the only half-integer values of ν

in the first octant which need to be checked are ν = {
3
2 , 5

2

}
. For ν = 3

2 (N = 1) we have that
� = −m2, while the only restriction on λ is

8m2

λ
= 1 − 4µ2

(with µ a half-integer). However, Boucher and Weil have shown that, when � = −m2, the
cases λ �= � (and so µ �= ν) are nonintegrable.

When ν = 5
2 , the only value of µ � ν for which (24) is positive is µ = 5

2 . This pair
corresponds to λ = � = −m2/3, which is known to be integrable.

Finally, putting together all the pieces we determine that, for k �= 0, the only combinations
of λ, � and m for which the Hamiltonian (2) is integrable are

� = λ = −m2/3 and � = λ = −m2, (25)

exactly those found in [12], with the first integrals other than the Hamiltonian being identified
using [28]. Since both these papers used the Painlevé analysis, nothing definitive could be
said about the integrability of other cases. From our analysis using the MRT, we are able to
close the cases left open by Boucher and Weil and state theorem 5

Theorem 5. The Hamiltonian (2) with k �= 0 is nonintegrable except when � = λ = −m2/3
or � = λ = −m2.

demonstrating Boucher and Weil’s conjecture.

6. Models with k = 0

As was previously mentioned, when k = 0 the potential in the Hamiltonian (2) becomes
homogeneous of degree 4, so we can apply the MRY theorem.

For the Hamiltonian (2) with k = 0, the only relevant cases are (1), (15) and (18). The
Yoshida coefficients are

{Yi} =
{−m2

λ
,
−m2

�
,
m4 + 2m2(� + λ) + 3λ�

λ� − m4

}
. (26)

10
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We may write

Y3 = Y1Y2 − 2(Y1 + Y2) + 3

1 − Y1Y2

and so there are, in general, only two free parameters. Since each Yi has to satisfy one of the
conditions (1), (15) and (18), the problem of identifying possibly integrable cases involves
solving an overdetermined system of three diophantine equations in two parameters, and is
not even evident that solutions exist.

However, solutions do exist: Helmi and Vucetich [12] identified the integrable cases

λ = � = −m2, λ = � = −m2/3,

λ = �/8 = −m2/3, λ = �/16 = −m2/6.
(27)

Though not explicitly stated, the last two have obvious analogues given by the symmetry
λ ↔ �. Maciejewski and Szydłowski [21, 22] noted that if λ = −m2 (Y1 = 1) then
automatically Y3 = 1 and Y2 can be given by any value which satisfies any one of (1), (15)
or (18) of the table above, with p prescribed freely. Again, the obvious symmetry λ ↔ �

provides an equivalent set with Y2 = 1. One of these solutions coincides with the first
possibility in (27).

We have identified one further possibly integrable case which does not belong to either of
the classes of Helmi and Vucetich, or Maciejewski et al. For this solution

λ = −m2

136
, � = −8m2

3
.

The symmetry λ ↔ � again produces another case.

7. Conclusion

We have studied the integrability of the Hamiltonian which describes (in general) a FRW
universe with a conformally coupled scalar field and a cosmological constant. Our analysis
is separated into two parts, which use different techniques, but both of which rely on the
Morales–Ramis theorem to prove nonintegrability.

In the special case of a massive, non-self-interacting conformally coupled scalar field with
zero cosmological constant, we were able to show, by the use of Kovacic’s algorithm, that the
normal variational equations associated with the Hamiltonian subject to the energy constraint
are never solvable in terms of Liouvillian functions, thereby establishing nonintegrability.
This is compatible with the results from numerical analysis based on Poincaré sections [6]
which indicate that the behaviour of the system is mathematically chaotic.

For the general case of a massive self-interacting scalar and a (possibly vanishing)
cosmological constant, we have rigorously proven that when the curvature k �= 0 the model is
not integrable, except for two cases, proving a conjecture of Boucher and Weil. When k = 0
we have explicitly identified a new combination of the parameters for which the Hamiltonian
is possibly integrable.

Note added. While this paper was being considered for publication, the authors became aware of the similar work
by Maciejewski et al [36] who obtained essentially the same results as the authors’.
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Appendix. Kovacic’s algorithm

Kovacic’s algorithm provides a procedure for computing the Liouvillian solutions of a
homogeneous linear second-order differential equation. If the algorithm terminates negatively,
we can conclude that no such solutions exist.

Let C(x) be the field of rational complex functions (the ratios of polynomials in x with
complex coefficients). It is well known that by using the change of dependent variable

y = ξ exp

(
1

2

∫
b dx

)
, (A.1)

the second-order homogeneous linear ODE

y ′′ + b(x)y ′ + c(x)y = 0

can be transformed to the so-called reduced invariant form

ξ ′′ − gξ = 0, (A.2)

where

g(x) = 1
2b′(x) + 1

4b(x)2 − c(x). (A.3)

Note that, if b(x) and c(x) ∈ C(x) then g(x) ∈ C(x).
Moreover, using a further change of variables v = ξ ′/ξ , equation (A.2) is transformed

into the Riccati equation

v′ + v2 = g. (A.4)

Now equation (A.2) has a Liouvillian solution if and only if equation (A.4) has an algebraic
solution, that is v solves a polynomial equation f (v) = 0, where the degree of f (the minimal
polynomial) in v belongs to the set Lmax = {1, 2, 4, 6, 12}.

Kovacic’s algorithm can be divided into three main steps: the first step is the determination
of the subset of L relevant for the linear ODE under consideration; the other two steps
are devoted, respectively, to determining the existence of the minimal polynomial, and its
construction. If the algorithm does not terminate successfully (i.e., equation (A.4) has no
algebraic solution), then equation (A.2) has no solution in terms of Liouvillian functions.

In the version used of the algorithm we essentially follow [1, 16, 20, 35]. Let

g = g(x) = s(x)

t (x)
, (A.5)

with s(x), t (x) being relatively prime polynomials and t (x) monic. Define the function h on
the set Lmax = {1, 2, 4, 6, 12} by h(1) = 1, h(2) = 4, h(4) = h(6) = h(12) = 12.

Step 1 (determination of possible orders of the minimal polynomial).
If t (x) = 1 then set m = 0, else factorize t (x) into monic relatively prime polynomials

t (x) = t1(x)t2
2 (x) · · · tmm (x),

where ti have no multiple roots and tm �= 1.

12
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Then,

(1.1) Let 	′ be the set of roots of t (x) (i.e., the singular points in the finite complex plane) and
let 	 = 	′ ∪ ∞ be the set of singular points.

Then the order of a singular point c ∈ 	′ is, as usual, o(c) = i if c is a root of
multiplicity i of ti . The order at infinity is defined by o(∞) = max(0, 4+deg(s)−deg(t)).
We call m+ = max(m, o(∞)).

For 0 � i � m+, denote by 	i = {c ∈ 	 | o(c) = i} the subset of all elements of
order i.

(1.2) If m+ � 2, then we write γ2 = card(	2), else γ2 = 0. Then we compute

γ = γ2 + card

⎛
⎜⎝ ⋃

3�k�m+

k odd

	k

⎞
⎟⎠.

(1.3) For the singular points of order 1 or 2, c ∈ 	2 ∪ 	1, we compute the principal parts of g:

gc = αc(x − c)−2 + βc(x − c)−1 + O(1),

if c ∈ 	′, and

g∞ = α∞x−2 + β∞x−3 + O(x−4),

for the point at infinity.
(1.4) We define the subset L′ (of all possible values for the degree of minimal polynomial) as

{1} ⊂ L′ if γ = γ2, {2} ⊂ L′ if γ � 2 and {4, 6, 12} ⊂ L′ if m+ � 2.
(1.5) We have the three following mutually exclusive cases:

(1.5.1) If m+ > 2, then L = L′.
(1.5.2) Define �c = √

1 + 4αc. If m+ � 2 and ∀c ∈ 	1 ∪ 	2,�c ∈ Q, then L = L′.
(1.5.3) If the cases (1.5.1) and (1.5.2) do not hold, then L = L′ − {4, 6, 12}.

(1.6) If L = ∅, then equation (A.2) is nonintegrable with the Galois group SL(2, C), else one
writes n for the minimum value in L.

For the second and third steps of the algorithm, we consider a fixed value of n.

Step 2.

(2.1) If ∞ has order 0, we write the set

E∞ =
{

0,
h(n)

n
, 2

h(n)

n
, 3

h(n)

n
, . . . , n

h(n)

n

}
.

(2.2) If c has order 1, then Ec = {h(n)}.
(2.3) If n = 1, for each c of order 2, we define

Ec = {
1
2 (1 + �c),

1
2 (1 − �c)

}
.

(2.4) If n � 2, for each c of order 2, we define

Ec = Z ∩
{

h(n)

2
(1 − �c) +

h(n)

n
k�c : k = 0, 1, . . . , n

}
.

(2.5) If n = 1, for each singular point of even order 2ν, with ν > 1, we compute the numbers
αc and βc defined (up to a sign) by the following conditions:

13
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(2.5.1) If c ∈ 	′,

gc =
{

αc

(x − c)ν
+

ν−1∑
i=2

µi,c

(x − c)i

}2

+
βc

(x − c)ν+1 + O (x − c)−ν ,

and we write

√
gc := αc (x − c)−ν +

ν−1∑
i=2

µi,c (x − c)−i .

(2.5.2) If c = ∞,

g∞ =
{

α∞xν−2 +
ν−3∑
i=0

µi,∞xi

}2

− β∞xν−3 + O(xν−4),

and we write

√
g∞ := α∞xν−2 +

ν−3∑
i=0

µi,∞xi.

Then for each c as above, we compute

Ec =
{

1

2

(
ν + ε

βc

αc

)
: ε = ±1

}
,

and the sign function on Ec is defined by

sign

(
1

2

(
ν + ε

βc

αc

))
= ε,

being +1 if βc = 0.

(2.6) If n = 2, for each c of order ν, with ν � 3, we write Ec = {ν}.

Step 3.

(3.1) For n fixed, we try to obtain elements e = (ec)c∈	 in the Cartesian product
∏

c∈	 Ec, such
that

(i) d(e) := n − n
h(n)

∑
c∈	 ec is a non-negative integer;

(ii) if n = 2 or n = 6, then e has an even number of elements which are odd integers;
(iii) when n = 4, then e has at least two elements not divisible by 3, and the sum of all

elements not divisible by 3 is divisible by 3.

If no such set e is obtained, we select the next value in L and repeat step 2, else
n is the maximum value in L and the Galois group is SL(2, C) (and equation (A.2) is
nonintegrable).

(3.2) For each family e as above, we try to obtain a rational function Q and a polynomial P,
such that

(i)

Q = n

h(n)

∑
c∈	′

ec

x − c
+ δn1

∑
c∈⋃

ν>1 	2ν

sign(ec)
√

gc,

where δn1 is the Kronecker delta.
(ii) P is a polynomial of degree d(e) and its coefficients are found as a solution of the

(in general, overdetermined) system of equations

P−1 = 0,

Pi−1 = −(Pi)
′ − QPi − (n − i)(i + 1)gPi+1, n � i � 0,

Pn = −P.
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If a pair (P,Q) as above is found, then equation (A.2) is integrable and the Riccati
equation (A.4) has an algebraic solution v given by any root v of the equation

f (v) =
n∑

i=0

Pi

(n − i)!
vi = 0.

If no pair as above is found, we take the next value in L and go to step 2. If n
is the greatest value in L, then the Galois group of (A.2) is SL(2, C) and the ODE is
nonintegrable.
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